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A.1 THE DECIMAL SYSTEM

In everyday life, we use a system based on decimal digits (0, 1,2,3,4,5,6,7,8,9) to
. represent numbers and refer to the system as the decimal system. Consider what the
number 83 means. It means eight tens plus three:

83 =(8x10) +3
The number 4728 means four thousands, seven hundreds, two tens, plus eight:
4728 = (4 X 1000) + (7 X 100) + (2 x 10) + 8

The decimal system is said to have a base, or radix, of 10. This means that each
digit in the number is multiplied by 10 raised to a power corresponding to that
digit’s position:
83 = (8 x 10") + (3 x 10°)
4728 = (4 X 10%) + (7 X 10?) + (2 X 10') + (8 x 10%)
The same principle holds for decimal fractions but negative powers of 10 are

used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus
6 thousandths:

0.256 = (2 X 107!) + (5 X 107%) + (6 X 107%)

A number with both an integer and fractional part has digits raised to both
positive and negative powers of 10:

472256 = (4 x 10%) + (7 X 10') + (2 x 10°)
+ (2% 107 + (5 X 1072) + (6 x 1073)
In general, for the decimal representation of X = {...d,d dp.d_jd_,d_5...}, the

value of X is

X =3 (d x 10)

A.2 THE BINARY SYSTEM

In the decimal system, 10 different digits are used to represent numbers with a base
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the
binary system are represented to the base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate
its base. For example, 83,, and 4728,, are numbers represented in decimal notation
or, more briefly, decimal numbers. The digits 1 and 0 in binary notation have the
same meaning as in decimal notation:

0, = 0y9

L =1y
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18.15 The following FORTRAN program is to be executed on a computer, and a parallel
version is to be executed on a 32-computer cluster.

LL: DO 101=1,1024

L2: SUM(I) =0

L3: DO20J=1,1

L4: 20 SUM(I) = SUM(I) + I

LS: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all processor and
memory-access activities. Ignore the overhead caused by the software loop control
statements (lines 1, 3, 5) and all other system overhead and resource conflicts.

a.

b.

d.

What is the total execution time (in machine cycle times) of the program on a sin-
gle computer?

Divide the I-loop iterations among the 32 computers as follows: Computer 1 exe-
cutes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 itera-
tions, and so on. What are the execution time and speedup factor compared with
part (a)? (Note that the computational workload, dictated by the J-loop, is unbal-
anced among the computers.)

Explain how to modify the parallelizing to facilitate a balanced parallel execution
of all the computational workload over 32 computers. By a balanced load is meant
an equal number of additions assigned to each computer with respect to both loops.
What is the minimum execution time resulting from the parallel execution on
32 computers? What is the resulting speedup over a single computer?

18.16 Consider the following two versions of a program to add two vectors:

L1: DO 10I=1,N DOALLK =1,M
L2: A(I) = B(I) + C(I) DO 101=L(K-1)+1,KL
L3: 10 CONTINUE A(I) = B(I) + C(I)
L4: SUM =0 10 CONTINUE
LS: DO20J=1,N SUM(K) =0
L6: SUM = SUM + A(J) DO20J=1,L
L7: 20 CONTINUE SUM(K) = SUM(K) + A(L(K—1) + J)
20 CONTINUE
ENDALL

a.

The program on the left executes on a uniprocessor. Suppose each line of code L2,
L4, and L6 takes one processor clock cycle to execute. For simplicity, ignore the
time required for the other lines of code. Initially all arrays are already loaded in
main memory and the short program fragment is in the instruction cache. How
many clock cycles are required to execute this program?

The program on the right is written to execute on a multiprocessor with
M processors. We partition the looping operations into M sections with L = N/M
elements per section. DOALL declares that all M sections are executed in parallel.
The result of this program is to produce M partial sums. Assume that k clock cycles
are needed for each interprocessor communication operation via the shared mem-
ory and that therefore the addition of each partial sum requires k cycles. An [-level
binary adder tree can merge all the partial sums, where / = log, M. How many
cycles are needed to produce the final sum?

Suppose N = 2% elements in the array and M = 256. What is the speedup
achieved by using the multiprocessor? Assume k = 200. What percentage is this
of the theoretical speedup of a factor of 2567
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Figure 18.24 Two Threads of Execution

where R1, R2, and R3 are processor registers, and a,B,y,0 are the starting main
memory addresses of arrays B(I), C(I), A(I), and D(I), respectively. Assume four
clock cycles for each Load or Store, two cycles for the Add, and eight cycles for the
Multiplier on either a uniprocessor or a single processor in an SIMD machine.

a.

C.

Calculate the total number of processor cycles needed to execute this code seg-
ment repeatedly 64 times on a SISD uniprocessor computer sequentially, ignoring
all other time delays.

Consider the use of an SIMD computer with 64 processing elements to execute the
vector operations in six synchronized vector instructions over 64-component vec-
tor data and both driven by the same-speed clock. Calculate the total execution
time on the SIMD machine, ignoring instruction broadcast and other delays.

What is the speedup gain of the SIMD computer over the SISD computer?

Produce a vectorized version of the following program:

DO201=1,N
B(I,1)=0
DO10J=1,M

A)=A(®) +B(L,J) X C(LJ)
10 CONTINUE

D() = E(I) + A(I)
20 CONTINUE

An application program is executed on a nine-computer cluster. A benchmark
program took time T on this cluster. Further, it was found that 25% of T was time in
which the application was running simultaneously on all nine computers. The remain-
ing time, the application had to run on a single computer.

a.

Calculate the effective speedup under the aforementioned condition as compared
to executing the program on a single computer. Also calculate a, the percentage
of code that has been parallelized (programmed or compiled so as to use the clus-
ter mode) in the preceding program.

Suppose that we are abie to effectively use 18 computers rather than 9 computers on
the paralielized portion of the code. Calculate the effective speedup that is achieved.
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(a)

(b) (c) ()]

Figure 18.23 Diagram for Problem 18.9

189
18.10

18.11

18.12

lines in the data cache among lines replaced. Assume a write-back policy and deter-
mine the effective memory access time in terms of the parameters just defined.

b. Now assume a bus-based SMP in which each processor has the characteristics of part
(a). Every processor must handle cache invalidation in addition to memory reads and
writes. This affects effective memory access time. Let fi,, be the fraction of data refer-
ences that cause invalidation signals to be sent to other data caches. The processor send-
ing the signal requires ¢ clock cycles to complete the invalidation operation. Other
processors are not involved in the invalidation operation. Determine the effective mem-
ory access time.

What organizational alternative is suggested by each of the illustrations in Figure 18.237

In Figure 18.8, some of the diagrams show horizontal rows that are partially filled. In
other cases, there are rows that are completely blank. These represent two different
types of loss of efficiency. Explain.

Consider the pipeline depiction in Figure 12.13b, which is redrawn in Figure 18.24a,

with the fetch and decode stages ignored, to represent the execution of thread A.

Figure 18.24b illustrates the execution of a separate thread B. In both cases, a simple

pipelined processor is used.

a. Show an instruction issue diagram, similar to Figure 18.8a, for each of the two threads.

b. Assume that the two threads are to be executed in parallel on a chip multiproces-
sor, with each of the two processors on the chip using a simple pipeline. Show an
instruction issue diagram similar to Figure 18.8k. Also show a pipeline execution
diagram in the style of Figure 18.24.

¢. Assume a two-issue superscalar architecture. Repeat part (b) for an interleaved
multithreading superscalar implementation, assuming no data dependencies.
Note: there is no unique answer; you need to make assumptions about latency
and priority.

d. Repeat part c for a blocked multithreading superscalar implementation.

e. Repeat for a four-issue SMT architecture.

The following code segment needs to be executed 64 times for the evaluation of the
vector arithmetic expression: D(I) = A(I) + B(I) X C(I) for0 = I = 63.

Load R1,B(I) /Rl « Memory (a + 1)/

Load R2,C(I)  /R2 « Memory (B + 1)/

Multiply R1,R2 /R1 « (R1) X (R2)/

Load R3,A(I)  /R3 « Memory (y+ 1)/

Add R3,R1 /R3 « (R3) + (R1)/

Load D1,R3 / Memory (0 + I} « (R3)/
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Figure 18.22 Two Cache Coherence Protocols

18.5

18.6

18.7

3. P1 writes to x (label the line in P1’s cache x").
4. P2readsx.

Figure 18.22 shows the state diagrams of two possible cache coherence protocols.
Deduce and explain each protocol, and compare each to MESI.

Consider an SMP with both L1 and L2 caches using the MESI protocol. As explained
in Section 18.3, one of four states is associated with each line in the L2 cache. Are all
four states also needed for each line in the L1 cache? If so, why? If not, explain which
state or states can be eliminated.

An earlier version of the IBM mainframe, the $S/390 G4, used three levels of cache. As
with the 2990, only the first level was on the processor chip [called the processor unit
(PU)]. The L2 cache was also similar to the z990. An L3 cache was on a separate chip
that acted as a memory controller, and was interposed between the L2 caches and the

‘memory cards. Table 18.4 shows the performance of a three-level cache arrangement

18.8

Table 1

for the IBM $/390. The purpose of this problem is to determine whether the inclusion of
the third level of cache seems worthwhile. Determine the access penalty (average num-
ber of PU cycles) for a system with only an L1 cache, and normalize that value to 1.0.
Then determine the normalized access penalty when both an L1 and L2 cache are used,
and the access penalty when all three caches are used. Note the amount of
improvement in each case and state your opinion on the value of the L3 cache.

a. Consider a uniprocessor with separate data and instruction caches, with hit ratios
of H; and H;, respectively. Access time from processor to cache is ¢ clock cycles, and
transfer time for a block between memory and cache is b clock cycles. Let f; be the
fraction of memory accesses that are for instructions, and f; is the fraction of dirty

8.4 Typical Cache Hit Rate on $/390 SMP Configuration [MAK97]

Memory Subsystem | (PU cydes) c.e.gsae: ' Hit Rate (%)

L1

cache 1 : 32 KB k 89

L2

cache 5 256 KB

L3

Memory 32 8GB

5
cache 14 2MB 3
3
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Problems

18.1

18.2

18.3

184

Let a be the percentage of program code that can be executed simultaneously by

n processors in a computer system. Assume that the remaining code must be executed

sequentially by a single processor. Each processor has an execution rate of x MIPS.

a. Derive an expression for the effective MIPS rate when using the system for exclu-
sive execution of this program, in terms of n, a, and x.

b. If n = 16 and x = 4 MIPS, determine the value of « that will yield a system per-
formance of 40 MIPS.

A multiprocessor with eight processors has 20 attached tape drives. There are a large

number of jobs submitted to the system that each require a maximum of four tape

drives to complete execution. Assume that each job starts running with only three
tape drives for a long period before requiring the fourth tape drive for a short period
toward the end of its operation. Also assume an endless supply of such jobs.

a. Assume the scheduler in the OS will not start a job unless there are four tape dri-
ves available. When a job is started, four drives are assigned immediately and are
not released until the job finishes. What is the maximum number of jobs that can
be in progress at once? What are the maximum and minimum number of tape dri-
ves that may be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same
time avoid system deadlock. What is the maximum number of jobs that can be in
progress at once? What are the bounds on the number of idling tape drives?

Can you foresee any problem with the write-once cache approach on bus-based mul-
tiprocessors? If so, suggest a solution.

Consider a situation in which two processors in an SMP configuration, over time,
require access to the same line of data from main memory. Both processors have a
cache and use the MESI protocol. Initially, both caches have an invalid copy of the line.
Figure 18.21 depicts the consequence of a read of line x by Processor P1. If this is the
start of a sequence of accesses, draw the subsequent figures for the following sequence:
1. P2readsx.

2. P1 writes to x (for clarity, label the line in P1’s cache x’).

Main
memory

X v 2

/

Memory
access

Cache / Cache 1

/ Snoop

Processor Processor

O—® M

Figure 18.21 MESI Example: Processor 1 Reads Line x
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Key Terms
active standby MESI protocol symmetric multiprocessor
cache coherence multiprocessor (SMP)
cluster nonuniform memory access uniform memory access
directory protocol (NUMA) . (UMA)
failback passive standby uniprocessor
failover s e e ] 1mypmmol iy 4. mt@ﬁfaClhty

Review Questions

18.1 List and briefly define three types of computer system organization.

18.2  What are the chief characteristics of an SMP?

18.3 What are some of the potential advantages of an SMP compared with a uniprocessor?
18.4 What are some of the key OS design issues for an SMP?

18.5 What is the difference between software and hardware cache coherent schemes?
18.6  What is the meaning of each of the four states in the MESI protocol?

18.7 What are some of the key benefits of clustering?

18.8  What is the difference between failover and failback?

18.9 What are the differences among UMA,NUMA, and CC-NUMA?
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Most of the instructions in Table 18.3 are self-explanatory. The two summation
instructions warrant further explanation. The accumulate operation adds together
the elements of a single vector (ACCUMULATE) or the elements of the product of
two vectors (MULTIPLY-AND-ACCUMULATE). These instructions present an
interesting design problem. We would like to perform this operation as rapidly as
possible, taking full advantage of the ALU pipeline. The difficulty is that the sum of
two numbers put into the pipeline is not available until several cycles later. Thus,
the third element in the vector cannot be added to the sum of the first two elements
until those two elements have gone through the entire pipeline. To overcome this
problem, the elements of the vector are added in such a way as to produce four
partial sums. In particular, elements 0,4, 8,12, ..., 124 are added in that order to
produce partial sum 0; elements 1,5,9,13, ..., 125 to partial sum 1; elements 2, 6, 10,
14, ..., 126 to partial sum 2; and elements 3,7,11,15, ..., 127 to partial sum 4. Each
of these partial sums can-proceed through the pipeline at top speed, because the
delay in the pipeline is roughly four cycles. A separate vector register is used to hold
the partial sums. When all elements of the original vector have been processed, the
four partial sums are added together to produce the final result. The performance of
this second phase is not critical, because only four vector elements are involved.

18.8 RECOMMENDED READING AND WEB SITE

[CATA94] surveys the principles of multiprocessors and examines SPARC-based
SMPs in detail. SMPs are also covered in some detail in [STON93] and [HWAN93].

[MILEOQ] is an overview of cache coherence algorithms and techniques for multi-
processors, with an emphasis on performance issues. Another survey of the issues relating to
cache coherence in multiprocessors is [LILJ93]. [TOMA93] contains reprints of many of the
key papers on the subject.

[UNGE02] is an excellent survey of the concepts of multithreaded processors and chip
multiprocessors. [UNGEO03] is a lengthy survey of both proposed and current multithreaded
processors that use explicit multithreading.

[PF1S98] is the book to read for anyone interested in clusters; the book covers the hard-
ware and software design issues and contrasts clusters with SMPs and NUMA; the book also
contains a solid technical description of SMP and NUMA design issues. A thorough treat-
ment of clusters can be found in [BUYY99a] and [BUYY99b]. [WEYGO1] is a less technical
survey of clusters, with good commentary on various commercial products.

Good discussions of vector computation can be found in [STON93] and [HWANO93].
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registers are to be processed for a particular operation. The vector-status register
contains control fields, such as the vector count, that determine how many elements
in the vector registers are to be processed. The vector-activity count keeps track of
the time spent executing vector instructions.

Compound Instructions As was discussed previously, instruction execution can
be overlapped using chaining to improve performance. The designers of the IBM
vector facility chose not to include this capability for several reasons. The System/370
architecture would have to be extended to handle complex interruptions (including
their effect on virtual memory management), and corresponding changes would be
needed in the software. A more basic issue was the cost of including the additional
controls and register access paths in the vector facility for generalized chaining.

Instead, three operations are provided that combine into one instruction (one
opcode) the most common sequences in vector computation, namely multiplication
followed by addition, subtraction, or summation. The storage-to-register MULTIPLY-
AND-ADD instruction, for example, fetches a vector from storage, multiplies it by
a vector from a register, and adds the product to a third vector in a register. By use
of the compound instructions MULTIPLY-AND-ADD and MULTIPLY-AND-

. SUBTRACT in the example of Figure 18.19, the total time for the iteration is reduced

from 10 to 8 cycles.

Unlike chaining, compound instructions do not require the use of additional
registers for temporary storage of intermediate results, and they require one less
register access. For example, consider the following chain:

A —> VRI1
VR1 + VR2 — VR1

In this case, two stores to the vector register VR1 are required. In the IBM
architecture there is a storage-to-register ADD instruction. With this instruction,
only the sum is placed in VR1. The compound instruction also avoids the need to
reflect in the machine-state description the concurrent execution of a number of
instructions, which simplifies status saving and restoring by the operating system
and the handling of interrupts.

The Instruction Set Table 18.3 summarizes the arithmetic and logical opera-
tions that are defined for the vector architecture. In addition, there are memory-
to-register load and register-to-memory store instructions. Note that many of the
instructions use a three-operand format. Also, many instructions have a number of
variants, depending on the location of the operands. A source operand may be a
vector register (V), storage (S), or a scalar register (Q). The target is always a vec-
tor register, except for comparison, the result of which goes into the vector-mask
register. With all these variants, the total number of opcodes (distinct instructions)
is 171. This rather large number, however, is not as expensive to implement as
might be imagined. Once the machine provides the arithmetic units and the data
paths to feed operands from storage, scalar registers, and vector registers to the
vector pipelines, the major hardware cost has been incurred. The architecture can,
with little difference in cost, provide a rich set of variants on the use of those regis-
ters and pipelines.
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Figure 18.20 Registers for the IBM 3090 Vector Facility

Figure 18.20 illustrates the registers that are part of .the IBM 3090 vector facil-
ity. There are sixteen 32-bit vector registers. The vector registers can also be coupled
to form eight 64-bit vector registers. Any register element can hold an integer or
floating-point value. Thus, the vector registers may be used for 32-bit and 64-bit
integer values, and 32-bit and 64-bit floating-point values.

The architecture specifies that each register contains from 8 to 512 scalar
elements. The choice of actual length involves a design trade-off. The time to do a vec-
tor operation consists essentially of the overhead for pipeline startup and register fill-
ing plus one cycle per vector element. Thus, the use of a large number of register
elements reduces the relative startup time for a computation. However, this efficiency
must be balanced against the added time required for saving and restoring vector
registers on a process switch and the practical cost and space limits. These considera-
tions led to the use of 128 elements per register in the current 3090 implementation.

Three additional registers are needed by the vector facility. The vector-mask
register contains mask bits that may be used to select which elements in the vector



